

OOП в Python

Часть III

Типы методов

В Python есть еще два типа функций, которые
могут быть созданы в классе:

● Статические методы.
● Методы класса.

● Может быть определен только внутри класса, но не
для объектов класса.

● Его можно вызвать непосредственно из класса по
ссылке на имя класса.

● Он не может получить доступ к атрибутам класса
● Статический метод связан с классом. Таким образом,

он не может изменить состояние объекта.
● Он также используется для разделения служебных

методов для класса.
● Все объекты класса используют только одну копию

статического метода.

Есть два способа определить статический метод в
Python:
Использование метода staticmethod()
Использование декоратора @staticmethod.

Статический метод

Определение Static Method in Python
#Перед реализацией метода нужно добавить декоратор
@staticmethod

class Calc:
 @staticmethod
 def add(arg1, arg2):
 return arg1 + arg2
Calc.add(2,3)

После объявления класса сделать обычный метод
статическим
class Employee:
 def sample(x):
 print('Inside static method', x)

Employee.sample = staticmethod(Employee.sample)
call static method
Employee.sample(10)

Вызов через класс

class DB:

Определяем статический метод использовав декоратор

 @staticmethod

 def get_conn():

 print("Получим дискриптор соединения с БД!")

Вызов метода

conn = DB.get_conn()

Вызов через объект
class DB:

Определяем статический метод использовав декоратор

 @staticmethod

 def get_conn():

 print("Получим дискриптор соединения с БД!")

test_sysytem_db = DB()

test_sysytem_db.get_conn()

При таком вызове не происходит подкапотной передачи
self. А значит нет доступа к атибутам объекта.

А можно как то это исправить ?

Учим статический метод работать с
экземляром класса

class DB:

 def __init__(self):
 self.name = "TestSystem"

 @staticmethod
 # Определяем переменную которая будет принимать объект
 def get_conn(self_):

 print(f"Получим дискриптор соединения с БД
 {self_.name}!")

test_sysytem_db = DB()
test_sysytem_db.get_conn(test_sysytem_db)

Вызов статического метода из обычного
class DB:

Определяем статический метод использовав декоратор

 @staticmethod

 def get_conn():

 print("Получим дискриптор соединения с БД!")

 def get_session(self):

 #вызов статического метода

 conn = DB.get_conn()

test_sysytem_db = DB()

test_sysytem_db.get_session()

Для чего мы используем static methods ?

Паттерн Singleton

Синглтон (одиночка) – это паттерн проектирования, цель
которого ограничить возможность создания объектов
данного класса одним экземпляром. Он обеспечивает
глобальность до одного экземпляра и глобальный доступ
к созданному объекту.

class DB:
 __instance__ = None

 def __init__(self):
 # Проверяем конструктор на сущ. экземпляр
 if DB.__instance__ is None:
 DB.__instance__ = self
 else:
 raise Exception("We can not creat another class")

 @staticmethod
 def get_instance():
 # We define the static method to fetch instance
 if not DB.__instance__:
 DB()
 return DB.__instance__

mongo = DB()
print(mongo)

my_db = DB.get_instance()
print(my_db)

another_db = DB.get_instance()
print(another_db)

new_gover = DB() ← Что будет при вызове ?

Методы класса

@classmethod — это метод, который получает класс в
качестве неявного первого аргумента, точно так же,
как обычный метод экземпляра получает экземпляр.
Это означает, что вы можете использовать класс и его
свойства внутри этого метода, а не конкретного
экземпляра.

Метод класса

● Может быть определен только внутри класса
● Получает класс в качестве неявного первого
аргумента

● Его можно вызвать непосредственно из класса по
ссылке на имя класса.

● Он не может получить доступ к атрибутам класса
● Не может изменить состояние объекта.
● Все объекты класса используют только одну копию

метода класса.

Есть два способа определить статический метод в
Python:
Использование метода classmethod()
Использование декоратора @classmethod.

Объявление метода @classmethod

class MyClass():

 TOTAL_OBJECTS = 0

 def __init__(self):

 MyClass.TOTAL_OBJECTS = MyClass.TOTAL_OBJECTS + 1

 @classmethod

 def total_objects(cls):

 print("Total objects: ", cls.TOTAL_OBJECTS)

Вызов через объект

my_obj1 = MyClass()

my_obj1.total_objects()

Вызов через класс

MyClass.total_objects() ← что вернет вызов ?

Объявление метода classmethod()

class Coffee:
 def __init__(self, milk, beans):
 self.milk = milk # percentage
 self.coffee = 100 - milk
 self.beans = beans

 def __repr__(self):
 return f'Milk={self.milk}% Coffee={self.coffee}%
 Beans={self.beans}'
 def cappuccino(cls):
 return cls(80, 'Arrabica')

Coffee.cappuccino = classmethod(Coffee.cappuccino)
print(Coffee.cappuccino())

 Шаблон проектирования “Фабрика“

Рассмотрим фабрику
class Shape:
 def draw(self):
 raise NotImplementedError('This method should
 have implemented.')

class Triangle(Shape):
 def draw(self):
 print("треугольник")

class Rectangle(Shape):
 def draw(self):
 print("прямоугольник")

class ShapeFactory:
 def getShape(self, shapeType):
 if shapeType == 'Triangle':
 return Triangle()
 elif shapeType == 'Rectangle':
 return Rectangle()
 else:
 pass
obj = ShapeFactory()
trgl = obj.getShape("Triangle")
trgl.draw()

class Coffee:
 def __init__(self, milk, beans):
 self.milk = milk # percentage
 self.coffee = 100-milk # percentage
 self.beans = beans
 def __repr__(self):
 return f'Milk={self.milk}% Coffee={self.coffee}%
 Beans={self.beans}'
 @classmethod
 def cappuccino(cls):
 return clf(80, 'Arrabica')

 @classmethod
 def espresso_macchiato(cls):
 return cls(30, 'Robusta')

 @classmethod
 def latte(cls):
 return cls(95, 'Arrabica')

print(Coffee.cappuccino())
print(Coffee.espresso_macchiato())
print(Coffee.latte())

Заключение

Декоратор аннотации @classmethod используется для
создания фабричных методов, поскольку они могут
принимать любой ввод и предоставлять объект класса на
основе параметров и обработки.

Абстрактные классы и методы в Python

● Абстрактные классы – реализуют механизм
организации объектов в иерархии, позволяющий
утверждать о наличии требуемых методов.

● Абстрактный метод – это метод для которого
отсутствует реализация. Объявляется с помощью
декоратора @abstractmethod из модуля abc

.

Абстрактные классы и методы в Python

Чтобы объявить абстрактный класс, нам сначала нужно
импортировать модуль abc . Давайте посмотрим на
пример.

from abc import ABC

class abs_class(ABC):

 @abstractmethod

 def render(self):

 pass

Абстрактный базовый класс – класс, на основе которого

Нельзя создать экземпляр объекта.

Абстрактный метод — это метод, определенный в базовом
классе, но он может не обеспечивать какую-либо
реализацию

Абстрактный базовый класс – класс, на основе которого

нельзя создать экземпляр объекта.

from abc import ABC

class AbsClass(ABC):

 @abstractmethod

 def render(self):

 pass

obj = AbsClass() # вызовет ошибку

Чтобы объявить абстрактный класс, нам сначала нужно
импортировать модуль abc .

from abc import ABC, abstractmethod

class Absclass(ABC):
 def print(self,x):
 print("Passed value: ", x)
 @abstractmethod
 def task(self):
 print("We are inside Absclass task")

class test_class(Absclass):
 def task(self):
 print("We are inside test_class task")

test_obj = test_class()
test_obj.task()
test_obj.print("10")

Продолжение следует….

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

