
  

OOП в Python

Часть III



  

Типы методов

В Python есть еще два типа функций, которые 
могут быть созданы в классе:
 
● Статические методы. 
● Методы класса.



  



  

● Может быть определен только внутри класса, но не 
для объектов класса.

● Его можно вызвать непосредственно из класса по 
ссылке на имя класса.

● Он не может получить доступ к атрибутам класса
● Статический метод связан с классом. Таким образом, 

он не может изменить состояние объекта.
● Он также используется для разделения служебных 

методов для класса.
● Все объекты класса используют только одну копию 

статического метода.

Есть два способа определить статический метод в 
Python:
Использование метода staticmethod()
Использование декоратора @staticmethod.

Статический метод



  

Определение Static Method in Python
#Перед реализацией метода нужно добавить декоратор 
@staticmethod

class Calc:
    @staticmethod
    def add(arg1, arg2):
       return arg1 + arg2 
Calc.add(2,3)

# После объявления класса сделать обычный метод 
статическим
class Employee:
    def sample(x):
        print('Inside static method', x)

Employee.sample = staticmethod(Employee.sample)
# call static method
Employee.sample(10)



  

Вызов через класс 

class DB:     

# Определяем статический метод использовав декоратор 

    @staticmethod 

    def get_conn(): 

        print("Получим дискриптор соединения с БД!") 

 

# Вызов метода 

conn = DB.get_conn()



  

Вызов через объект
class DB:     

# Определяем статический метод использовав декоратор 

    @staticmethod 

    def get_conn(): 

        print("Получим дискриптор соединения с БД!") 

test_sysytem_db = DB()

test_sysytem_db.get_conn()

При таком вызове не происходит подкапотной передачи 
self. А значит нет доступа к атибутам объекта.

А можно как то это исправить ?

 



  

Учим статический метод работать с 
экземляром класса

class DB:
    
    def __init__(self):
        self.name = "TestSystem"
    

    @staticmethod                                           
    # Определяем переменную которая будет принимать объект
    def get_conn(self_):

        print(f"Получим дискриптор соединения с БД          
              {self_.name}!")

test_sysytem_db = DB()
test_sysytem_db.get_conn(test_sysytem_db)



  

Вызов статического метода из обычного
class DB:     

# Определяем статический метод использовав декоратор 

    @staticmethod 

    def get_conn(): 

        print("Получим дискриптор соединения с БД!")

    def get_session(self):

        #вызов статического метода

        conn = DB.get_conn()

        

test_sysytem_db = DB()

test_sysytem_db.get_session()

 



  

Для чего мы используем static methods ?



  

Паттерн Singleton

Синглтон (одиночка) – это паттерн проектирования, цель 
которого ограничить возможность создания объектов 
данного класса одним экземпляром. Он обеспечивает 
глобальность до одного экземпляра и глобальный доступ 
к созданному объекту.



  



  

class DB:
    __instance__ = None

    def __init__(self):
        # Проверяем конструктор на сущ. экземпляр
        if DB.__instance__ is None:
            DB.__instance__ = self
        else:
            raise Exception("We can not creat another class")

    @staticmethod
    def get_instance():
        # We define the static method to fetch instance
        if not DB.__instance__:
            DB()
        return DB.__instance__

mongo = DB()
print(mongo)

my_db = DB.get_instance()
print(my_db)

another_db = DB.get_instance()
print(another_db)

new_gover = DB() ← Что будет при вызове ?



  

Методы класса

@classmethod — это метод, который получает класс в 
качестве неявного первого аргумента, точно так же, 
как обычный метод экземпляра получает экземпляр. 
Это означает, что вы можете использовать класс и его 
свойства внутри этого метода, а не конкретного 
экземпляра.



  

Метод класса

● Может быть определен только внутри класса
● Получает класс в качестве неявного первого 
аргумента

● Его можно вызвать непосредственно из класса по 
ссылке на имя класса.

● Он не может получить доступ к атрибутам класса
● Не может изменить состояние объекта.
● Все объекты класса используют только одну копию 

метода класса.

Есть два способа определить статический метод в 
Python:
Использование метода classmethod()
Использование декоратора @classmethod.



  

Объявление метода @classmethod

class MyClass():    

    TOTAL_OBJECTS = 0

    def __init__(self):

        MyClass.TOTAL_OBJECTS = MyClass.TOTAL_OBJECTS + 1   
   

    @classmethod

    def total_objects(cls):

        print("Total objects: ", cls.TOTAL_OBJECTS)

# Вызов через объект

my_obj1 = MyClass()

my_obj1.total_objects()

# Вызов через класс       

MyClass.total_objects() ← что вернет вызов ? 



  

Объявление метода classmethod()

class Coffee:
  def __init__(self, milk, beans):
    self.milk = milk # percentage
    self.coffee = 100 - milk 
    self.beans = beans
    
  def __repr__(self):
    return f'Milk={self.milk}% Coffee={self.coffee}%        
        Beans={self.beans}'
  def cappuccino(cls):
    return cls(80, 'Arrabica')
  
Coffee.cappuccino = classmethod(Coffee.cappuccino)
print(Coffee.cappuccino())



  

    Шаблон проектирования “Фабрика“



  



  

# Рассмотрим фабрику
class Shape:
   def draw(self):
      raise NotImplementedError('This method should         
      have implemented.')

class Triangle(Shape):
    def draw(self):
    print("треугольник")

class Rectangle(Shape):
   def draw(self):
    print("прямоугольник")

class ShapeFactory:
   def getShape(self, shapeType):
        if shapeType == 'Triangle':
            return Triangle()
        elif shapeType == 'Rectangle':
            return Rectangle()
        else:
            pass
obj = ShapeFactory()
trgl =  obj.getShape("Triangle")
trgl.draw()



  

class Coffee:
  def __init__(self, milk, beans):
    self.milk = milk # percentage
    self.coffee = 100-milk # percentage
    self.beans = beans
  def __repr__(self):
    return f'Milk={self.milk}% Coffee={self.coffee}%        
                   Beans={self.beans}'
  @classmethod
  def cappuccino(cls):
    return clf(80, 'Arrabica')
  
  @classmethod
  def espresso_macchiato(cls):
    return cls(30, 'Robusta')
  
  @classmethod
  def latte(cls):
    return cls(95, 'Arrabica')

print(Coffee.cappuccino())
print(Coffee.espresso_macchiato())
print(Coffee.latte())



  

Заключение 

Декоратор аннотации @classmethod используется для 
создания фабричных методов, поскольку они могут 
принимать любой ввод и предоставлять объект класса на 
основе параметров и обработки.



  



  

Абстрактные классы и методы в Python

● Абстрактные классы – реализуют механизм 
организации объектов в иерархии, позволяющий 
утверждать о наличии требуемых методов.

● Абстрактный метод – это метод для которого 
отсутствует реализация. Объявляется с помощью 
декоратора @abstractmethod из модуля abc

.



  

Абстрактные классы и методы в Python

Чтобы объявить абстрактный класс, нам сначала нужно 
импортировать модуль abc . Давайте посмотрим на 
пример.

from abc import ABC 

class abs_class(ABC):

      @abstractmethod

      def render(self):

          pass  

      

Абстрактный базовый класс – класс, на основе которого

Нельзя создать экземпляр объекта.

Абстрактный метод — это метод, определенный в базовом 
классе, но он может не обеспечивать какую-либо 
реализацию



  

Абстрактный базовый класс – класс, на основе которого

нельзя создать экземпляр объекта.

from abc import ABC 

class AbsClass(ABC):

      @abstractmethod

      def render(self):

          pass 

obj = AbsClass() # вызовет ошибку



  

Чтобы объявить абстрактный класс, нам сначала нужно 
импортировать модуль abc . 

from abc import ABC, abstractmethod                    

class Absclass(ABC):
    def print(self,x):
        print("Passed value: ", x)
    @abstractmethod
    def task(self):
        print("We are inside Absclass task")

class test_class(Absclass):
    def task(self):                                    
        print("We are inside test_class task")

test_obj = test_class()                       
test_obj.task()                         
test_obj.print("10")



  

Продолжение следует….
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