
  

Обработка 
исключения

try..  exept..



  



  

Обработка исключений в Python

Программа, написанная на языке Python, останавливается 
сразу как обнаружит ошибку. Ошибки могут быть:

Синтаксические ошибки — возникают, когда написанное 
выражение не соответствует правилам языка (например, 
написана лишняя скобка);

Логические ошибки  — это ошибки, когда синтаксис 
действительно правильный, но логика не та, какую вы 
предполагали. Программа работает успешно, но даёт 
неверные результаты.

Исключения — возникают во время выполнения 
программы (например, при делении на ноль).



  



  

Перехват ошибок во время выполнения

Не всегда при написании программы можно сказать 
возникнет или нет в данном месте исключение. Чтобы 
приложение продолжило работу при возникновении 
проблем, такие ошибки нужно перехватывать и 
обрабатывать с помощью ловуши try/except.



  

В каких случаях нужно предусматривать 
обработку ошибок ?

● Работа с файлами (  нет прав доступа , диск 
переполнен и т.д)

● Работа с СУБД ( сервер не доступен, ошибка 
выполнения запроса и т.д)

● Работа с сетью (сеть недоступна, ошибка соединения, 
обработка кода возврата и т.д)

● Работа с различными библиотеками которые бросают 
exeption в случае обнаружения ошибки.



  

Как устроен механизм исключений ?

В Python есть встроенные исключения, которые появляются 
после того как приложение находит ошибку. В этом случае 
текущий процесс временно приостанавливается и передает 
ошибку на уровень вверх до тех пор, пока она не будет 
обработана. В случае когда  ошибка не обработывается, 
программа прекратит свою работу и в консоли мы увидим 
Traceback с подробным описанием ошибки.



  

Иерархия классов исключений Python
 https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html


  

BaseException - базовое исключение, от которого берут 
начало все остальные.
SystemExit - исключение, порождаемое функцией sys.exit при 
выходе из программы.
KeyboardInterrupt - порождается при прерывании программы 
пользователем 
GeneratorExit - порождается при вызове метода close 
объекта generator.
  Exception - а вот тут уже заканчиваются полностью        
  системные исключения (которые лучше не трогать) и        
  начинаются обыкновенные, с которыми можно работать.

  StopIteration - порождается встроенной функцией next,    
  если в итераторе больше нет элементов.

  ArithmeticError - арифметическая ошибка.

  FloatingPointError - порождается при неудачном           
  выполнении операции с плавающей запятой. На практике     
  встречается нечасто.
  OverflowError - возникает, когда результат               
  арифметической операции слишком велик для представления. 
  ZeroDivisionError - деление на ноль.



  

Генерация  исключения 
Напишем код, который будет создавать исключительную 
ситуацию. К примеру, попробуем поделить число на 0:

>>> print(1 / 0)

В командной оболочке получим следующее:

Traceback (most recent call last):

  File "", line 1, in

  ZeroDivisionError: division by zero

Разберём это сообщение подробнее:

Интерпретатор нам сообщает о том, что он поймал 
исключение и напечатал информацию: Traceback (most 
recent call last).

Далее имя файла File "". Имя пустое, потому что этот 
код был запущен в интерактивном интерпретаторе, строка 
в файле line 1;

Название исключения ZeroDivisionError и краткое 
описание исключения division by zero.



  

При выбросе исключения программа закрывается и не 
выполняет код, который следует за строкой, в которой 
произошло исключение!



  

Синтаксис конструкции



  

Пример

try:
    a = 1/0

except ZeroDivisionError:
   print("Возникло исключение:ошибка деления на ноль! ")
   a = 0

else:
    print("Ветка else вызывается если не возникло 
исключения")

finally:
    print("Аккуратно обрабатываем ошибку и идем дальше...")



  

Ловушка для двух исключений

from calc import div

try:

    result = div(100, 0)

    print("Расчёт проведён успешно")

except (ZeroDivisionError, KeyError) as e:

    print("Ошибка деления или ошибка обращения по      
           ключу. Вот она:", e)

print(result)



  

Несколько ловушек

from calc import div

try:

    result = div(100, 0)

    print("Расчёт проведён успешно")

except ZeroDivisionError as e:

    print("Ошибка деления произошла", e)

except KeyError as e:

    print("Ошибка обращения по ключу произошла:", e)

print(result)



  

Перехват ошибки чтения

try:

    file = open('ok123.txt', 'r')

except FileNotFoundError as e:

    print(e)

> [Errno 2] No such file or directory: 'ok123.txt'



  

Порядок следования обработки

try:

    file = open('ok123.txt', 'r')

except Exception as e:

    Print(Exception ,e)

except FileNotFoundError as e:

    Print(FileNotFoundError, e)

Какой блок поймает исключение если файл не обнаружен ?



  

Блок finally  выполняется всегда

try:

    file = open('ok.txt', 'r')

    lines = file.readlines()

    print(lines[5]) ← Обращение к несуществ. строке

except IndexError as e:

    print(e)

finally:

    file.close()

    if file.closed:

        print("файл закрыт!")

> файл закрыт!



  

Каскадное включение перехватчиков

try:

    ……

        try:

            ……

         except E: 

            ……

except E:

    ……



  

import numpy as np

def divide(x, y):
    try:
        out = x/y
    except:
        try:
            out = np.inf * x / abs(x)
        except:
            out = np.nan
    finally:
        return out

divide(15, 3)  # 5.0
divide(15, 0)  # inf
divide(-15, 0) # -inf
divide(0, 0)   # nan



  

Генерация исключений в Python

Для принудительной генерации исключения используется 
инструкция raise.

try:

   raise Exception("Что то пошло не так")

except Exception as e:

   print("Message:" + str(e))



  

Валидатор входного строкового значения на имя человека.

def validate(name):

    if len(name) < 10:

        raise ValueError

try:

    name = input("Введите имя:")

    validate(name)

except ValueError:

    print("Имя слишком короткое:")

     



  

Пользовательские исключения

В Python можно создавать собственные исключения. Такая 
практика позволяет увеличить гибкость процесса 
обработки ошибок в рамках той предметной области, для 
которой написана ваша программа.

class NameTooShortError(ValueError):
    pass

def validate(name):
    if len(name) < 10:
        raise NameTooShortError



  

Пользовательские исключения в Python

Для реализации собственного типа исключения необходимо 
создать класс, являющийся наследником от одного из 
классов исключений.

class NegValException(Exception):
   pass

try:
   val = int(input("input positive number: "))
   if val < 0:
       raise NegValException("Neg val: " + str(val))
   print(val + 10)
except NegValException as e:
   print(e)



  

Вызов конструктора базового класса

class NegValException(Exception):

    def __init__(self, number):

        super().__init__(f"Neg val:  {number}")

        self.number = number

try:
   val = int(input("input positive number: "))
   if val < 0:
       raise NegValException(val)
  
except NegValException as e:
  print(e)



  

Продолжение следует...



  

Handle psycopg2 exceptions that occur 
while connecting to PostgreSQL

# declare a new PostgreSQL connection object
try:
    conn = connect(
        dbname = "python_test",
        user = "WRONG_USER",
        host = "localhost",
        password = "mypass"
    )
except OperationalError as err:
    # pass exception to function
    print_psycopg2_exception(err)

    # set the connection to 'None' in case of error
    conn = None



  

def print_psycopg2_exception(err):
    # get details about the exception
    err_type, err_obj, traceback = sys.exc_info()

    # get the line number when exception occured
    line_num = traceback.tb_lineno
    
# print the connect() error
    print ("\npsycopg2 ERROR:", err, "on line 
number:", line_num)
    print ("psycopg2 traceback:", traceback, "-- 
type:", err_type)

    # psycopg2 extensions.Diagnostics object attribute
    print ("\nextensions.Diagnostics:", err.diag)

    # print the pgcode and pgerror exceptions
    print ("pgerror:", err.pgerror)
    print ("pgcode:", err.pgcode, "\n")



  

Ресурс

https://kb.objectrocket.com/postgresql/python-error-handling-
with-the-psycopg2-postgresql-adapter-645

https://kb.objectrocket.com/postgresql/python-error-handling-with-the-psycopg2-postgresql-adapter-645
https://kb.objectrocket.com/postgresql/python-error-handling-with-the-psycopg2-postgresql-adapter-645
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