

Обработка
исключения

try.. exept..

Обработка исключений в Python

Программа, написанная на языке Python, останавливается
сразу как обнаружит ошибку. Ошибки могут быть:

Синтаксические ошибки — возникают, когда написанное
выражение не соответствует правилам языка (например,
написана лишняя скобка);

Логические ошибки — это ошибки, когда синтаксис
действительно правильный, но логика не та, какую вы
предполагали. Программа работает успешно, но даёт
неверные результаты.

Исключения — возникают во время выполнения
программы (например, при делении на ноль).

Перехват ошибок во время выполнения

Не всегда при написании программы можно сказать
возникнет или нет в данном месте исключение. Чтобы
приложение продолжило работу при возникновении
проблем, такие ошибки нужно перехватывать и
обрабатывать с помощью ловуши try/except.

В каких случаях нужно предусматривать
обработку ошибок ?

● Работа с файлами (нет прав доступа , диск
переполнен и т.д)

● Работа с СУБД (сервер не доступен, ошибка
выполнения запроса и т.д)

● Работа с сетью (сеть недоступна, ошибка соединения,
обработка кода возврата и т.д)

● Работа с различными библиотеками которые бросают
exeption в случае обнаружения ошибки.

Как устроен механизм исключений ?

В Python есть встроенные исключения, которые появляются
после того как приложение находит ошибку. В этом случае
текущий процесс временно приостанавливается и передает
ошибку на уровень вверх до тех пор, пока она не будет
обработана. В случае когда ошибка не обработывается,
программа прекратит свою работу и в консоли мы увидим
Traceback с подробным описанием ошибки.

Иерархия классов исключений Python
 https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

BaseException - базовое исключение, от которого берут
начало все остальные.
SystemExit - исключение, порождаемое функцией sys.exit при
выходе из программы.
KeyboardInterrupt - порождается при прерывании программы
пользователем
GeneratorExit - порождается при вызове метода close
объекта generator.
 Exception - а вот тут уже заканчиваются полностью
 системные исключения (которые лучше не трогать) и
 начинаются обыкновенные, с которыми можно работать.

 StopIteration - порождается встроенной функцией next,
 если в итераторе больше нет элементов.

 ArithmeticError - арифметическая ошибка.

 FloatingPointError - порождается при неудачном
 выполнении операции с плавающей запятой. На практике
 встречается нечасто.
 OverflowError - возникает, когда результат
 арифметической операции слишком велик для представления.
 ZeroDivisionError - деление на ноль.

Генерация исключения
Напишем код, который будет создавать исключительную
ситуацию. К примеру, попробуем поделить число на 0:

>>> print(1 / 0)

В командной оболочке получим следующее:

Traceback (most recent call last):

 File "", line 1, in

 ZeroDivisionError: division by zero

Разберём это сообщение подробнее:

Интерпретатор нам сообщает о том, что он поймал
исключение и напечатал информацию: Traceback (most
recent call last).

Далее имя файла File "". Имя пустое, потому что этот
код был запущен в интерактивном интерпретаторе, строка
в файле line 1;

Название исключения ZeroDivisionError и краткое
описание исключения division by zero.

При выбросе исключения программа закрывается и не
выполняет код, который следует за строкой, в которой
произошло исключение!

Синтаксис конструкции

Пример

try:
 a = 1/0

except ZeroDivisionError:
 print("Возникло исключение:ошибка деления на ноль! ")
 a = 0

else:
 print("Ветка else вызывается если не возникло
исключения")

finally:
 print("Аккуратно обрабатываем ошибку и идем дальше...")

Ловушка для двух исключений

from calc import div

try:

 result = div(100, 0)

 print("Расчёт проведён успешно")

except (ZeroDivisionError, KeyError) as e:

 print("Ошибка деления или ошибка обращения по
 ключу. Вот она:", e)

print(result)

Несколько ловушек

from calc import div

try:

 result = div(100, 0)

 print("Расчёт проведён успешно")

except ZeroDivisionError as e:

 print("Ошибка деления произошла", e)

except KeyError as e:

 print("Ошибка обращения по ключу произошла:", e)

print(result)

Перехват ошибки чтения

try:

 file = open('ok123.txt', 'r')

except FileNotFoundError as e:

 print(e)

> [Errno 2] No such file or directory: 'ok123.txt'

Порядок следования обработки

try:

 file = open('ok123.txt', 'r')

except Exception as e:

 Print(Exception ,e)

except FileNotFoundError as e:

 Print(FileNotFoundError, e)

Какой блок поймает исключение если файл не обнаружен ?

Блок finally выполняется всегда

try:

 file = open('ok.txt', 'r')

 lines = file.readlines()

 print(lines[5]) ← Обращение к несуществ. строке

except IndexError as e:

 print(e)

finally:

 file.close()

 if file.closed:

 print("файл закрыт!")

> файл закрыт!

Каскадное включение перехватчиков

try:

 ……

 try:

 ……

 except E:

 ……

except E:

 ……

import numpy as np

def divide(x, y):
 try:
 out = x/y
 except:
 try:
 out = np.inf * x / abs(x)
 except:
 out = np.nan
 finally:
 return out

divide(15, 3) # 5.0
divide(15, 0) # inf
divide(-15, 0) # -inf
divide(0, 0) # nan

Генерация исключений в Python

Для принудительной генерации исключения используется
инструкция raise.

try:

 raise Exception("Что то пошло не так")

except Exception as e:

 print("Message:" + str(e))

Валидатор входного строкового значения на имя человека.

def validate(name):

 if len(name) < 10:

 raise ValueError

try:

 name = input("Введите имя:")

 validate(name)

except ValueError:

 print("Имя слишком короткое:")

Пользовательские исключения

В Python можно создавать собственные исключения. Такая
практика позволяет увеличить гибкость процесса
обработки ошибок в рамках той предметной области, для
которой написана ваша программа.

class NameTooShortError(ValueError):
 pass

def validate(name):
 if len(name) < 10:
 raise NameTooShortError

Пользовательские исключения в Python

Для реализации собственного типа исключения необходимо
создать класс, являющийся наследником от одного из
классов исключений.

class NegValException(Exception):
 pass

try:
 val = int(input("input positive number: "))
 if val < 0:
 raise NegValException("Neg val: " + str(val))
 print(val + 10)
except NegValException as e:
 print(e)

Вызов конструктора базового класса

class NegValException(Exception):

 def __init__(self, number):

 super().__init__(f"Neg val: {number}")

 self.number = number

try:
 val = int(input("input positive number: "))
 if val < 0:
 raise NegValException(val)

except NegValException as e:
 print(e)

Продолжение следует...

Handle psycopg2 exceptions that occur
while connecting to PostgreSQL

declare a new PostgreSQL connection object
try:
 conn = connect(
 dbname = "python_test",
 user = "WRONG_USER",
 host = "localhost",
 password = "mypass"
)
except OperationalError as err:
 # pass exception to function
 print_psycopg2_exception(err)

 # set the connection to 'None' in case of error
 conn = None

def print_psycopg2_exception(err):
 # get details about the exception
 err_type, err_obj, traceback = sys.exc_info()

 # get the line number when exception occured
 line_num = traceback.tb_lineno

print the connect() error
 print ("\npsycopg2 ERROR:", err, "on line
number:", line_num)
 print ("psycopg2 traceback:", traceback, "--
type:", err_type)

 # psycopg2 extensions.Diagnostics object attribute
 print ("\nextensions.Diagnostics:", err.diag)

 # print the pgcode and pgerror exceptions
 print ("pgerror:", err.pgerror)
 print ("pgcode:", err.pgcode, "\n")

Ресурс

https://kb.objectrocket.com/postgresql/python-error-handling-
with-the-psycopg2-postgresql-adapter-645

https://kb.objectrocket.com/postgresql/python-error-handling-with-the-psycopg2-postgresql-adapter-645
https://kb.objectrocket.com/postgresql/python-error-handling-with-the-psycopg2-postgresql-adapter-645

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

