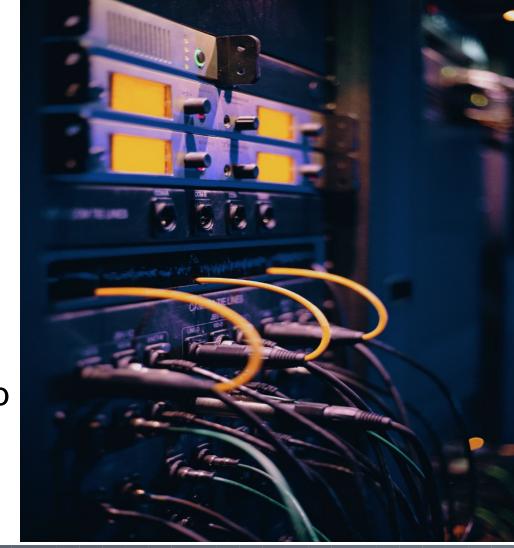
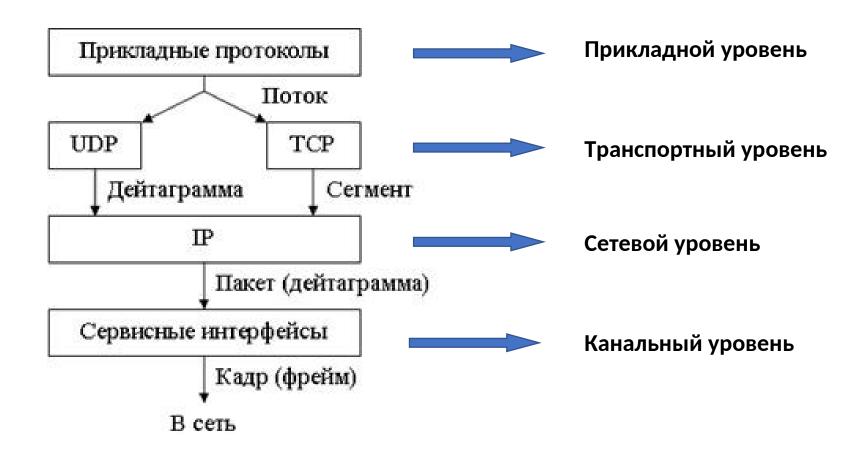
Тема 3. Протоколы IPv4, ICMP. Раздел 1. IPv4

Artem Beresnev

t.me/ITSMDao


t.me/ITSMDaoChat

План


- Вспомним ТСР\ІР
- · Заголовок IPv4

t.me/ITSMDao

· Надо двигаться дальше. Для этого нужно вспомнить основные моменты

Поток данных по стеку

Надежная и ненадежная доставка

- Дейтаграммная передача
 - IP, UDP
- Передача с установкой соединений
 - TCP
 - QUIC + UDP

Что на сетевом уровне

- · Передача сообщений
- · Интернетвокинг
 - Маршрутизация
 - Балансировка и QoS
 - Согласование адресов
 - Конфигурирование
 - Диагностика
 - И т.д.
- · IPv4 и IPv6 лишь часть сетевого слоя

Адресация на разных уровнях

Уровень стека	Адрес	Пример
Прикладной уровень	DNS, X.500, WINS условно	www.ifmo.ru
Транспортный уровень	Номер порта TCP или UDP	443
Сетевой уровень	Ір адрес	192.168.0.103 fe80::59e1:d46b:1bb:5169
Канальный уровень	Media Access Control (MAC)	BC:EE:7B:5B:E5:E5

Синтетические адреса: URL, socket (ip:port)

Типы рассылок

Помимо классов, IP-адреса делятся на категории, предназначенные для разных типов рассылок:

«один любому одному» anycast

·«один к одному» unicast;

·«один ко многим» multicast;

·«один ко всем» broadcast.

anycast

unicast

multicast

broadcast

Структура ІР адреса

Адрес СЕТИ - Адрес Узла

Доставка до сети назначения. Т.е. для обеспечения работы составных сетей через маршрутизацию.

Доставка до узла внутри сети

RFC (Request for Comments)

- · RFC документ из серии пронумерованных информационных документов Интернета, содержащих технические спецификации и стандарты
- · Публикацией документов RFC занимается IETF под эгидой открытой организации Общество Интернета (англ. Internet Society, ISOC). Правами на RFC обладает именно Общество Интернета.
- · Очерк истории RFC за 50 лет с 1969 по 2019 гг. представлен в RFC 8700
- https://www.rfc-editor.org/retrieve/

Вставі

 Лучший способ разобраться с протоколом – понять его служебный загловок

Заголовок IPv4-пакета

Версия (4 бита)	Длина заг (4 би		Тип службы (8 битов)	Длина данных (16 битов)	
	Иденти (16 б	фикаци итов)	я	Флаги (3 бита)	Смещение пакета (13 бит)
Время жизни Протог (8 битов) (8 бито			Контрольная сумма (16 битов)		
		IP-	адрес отпраі (32 бита)		
		IP	-адрес получ (32 бита)		
Параметры IP (может быть пустым)			Заполнение		
			Данные		

Назначение полей

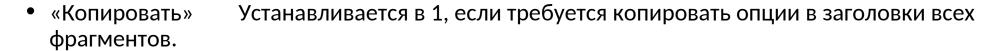
- Версия
- · Длина заголовка в 32-битных словах от 5 до максимальное 15 (60 байт).
- Тип службы состоит из двух полей:
 - Differentiated Services Code Point DSCP Указатель кода уровня обслуживания
 - Explicit Congestion Notification ECN Указатель перегрузки
- · Размер пакета 16-битный полный размер пакета в байтах, включая заголовок и данные. От 20 до 65535 байт.
- Идентификатор
- Флаги
- Смещение фрагмента
- Время жизни Максимальное значение TTL=255. Обычное начальное значение TTL=64.
 - Уменьшается.
- Протокол
- Контрольная сумма заголовка рассчитывается по RFC 1071
- Адрес источника
- Адрес назначения
- Опции

Изменение заголовка при маршрутизации

- При прохождении маршрутизатора изменяются два поля минимум:
 - Время жизни
 - Контрольная сумма заголовка
- Может меняться поле опций

Поле Тип службы

- Раньше поле интерпретировалось как код Т
 - Например значение для telnet 0x10
- Сейчас действует RFC-2474
 - Differentiated Services Code Point (DSCP)
 - 3 бита на селектор класса
 - 3 бита на приоритет отбрасывания пакета
 - По рекомендациям IETF, чем выше значение, записанное в CS, тем требовательнее этот трафик к сервису.
 - Explicit Congestion Notification, (ECN)
 - RFC 3168
 - 2 бита
 - можно передать признак появления «затора» на маршруте


3 бита	3 бита	2 бита
Class Selector	Drop Precedence	ECN

Селектор класса	DSCP
Приоритет 1	001000
Приоритет 2	010000
Приоритет 3	011000
Приоритет 4	100000
Приоритет 5	101000
Приоритет 6	110000
Приоритет 7	111000

- Необходима поддержка обоими хостами // ____t,me/ITSMDao
- https://habr.com/ru/post/420525/

Опции ІР

- Не обязательное поле
- Используется для управления
- Подполя:

- «Класс опции» 0 для «управляющих» опций и 2 для опций «измерений и отладки»
- «Номер опции» содержит код опции.
- «Размер опции» содержит размер (длину) опции
- «Аргументы опции» поле переменной длинны, содержащее данные опции (Данные)

Опции ІР

Пример:

- · Запись маршрута (RR)
 - Kлаcc = 0
 - Номер опции = 7
 - Размер опции = переменный
 - Аргументы опции поле переменной длинны куда каждый маршрутизатор по дороге должен записать свой IP-адрес

IP-фрагментация и реассемблирование

- · Проблема разных MTU (Maximum transmission unit) максимальной длины пакета.
- Решение фрагментация пакетов разбиение дейтаграммы на множество частей, которые могут быть повторно собраны позже.
- · Для IP-фрагментации и повторной сборки используются поля из IP заголовка:
 - •Идентификатор;
 - •Полная длина;
 - •Смещение фрагмента;

Пример фрагментации

Sequence	Identifier	Total Length	DF May / Don't	MF Last / More	Fragment Offset
0	345	5140	0	0	0

IP Fragments (Ethernet)

Sequence	Identifier	Total Length	DF May / Don't	MF Last / More	Fragment Offset
0-0	345	1500	0	1	0
0-1	345	1500	0	1	185
0-2	345	1500	0	1	370
0-3	345	700	0	0	555

Первый фрагмент имеет смещение 0, длина этого фрагмента - 1500; она включает 20 байтов для измененного оригинального IP заголовка.

Второй фрагмент имеет смещение 185 (185 x 8 = 1480), которое означает, что порция данных этого фрагмента начинается с 1480 байта в оригинальной IP датаграмме. Длина этого фрагмента - 1500; она включает дополнительный IP заголовок, созданный для этого фрагмента.

Третий фрагмент имеет смещение 370 (370 x 8 = 2960), которое означает, что данные этого фрагмента начинаются с 2960 байта в оригинальной IP датаграмме. Длина этого фрагмента - 1500; она включает дополнительный заголовок IP, созданный для этого фрагмента.

Четвертый фрагмент имеет смещение 555 (555 x 8 = 4440), которое означает, что часть данных этого фрагмента начинается с 4440 байтов в оригинальной IP датаграмме. Длина этого фрагмента - 700 байтов.

Если добавить байты данных от последнего фрагмента (680 = 700 - 20), это даст 5120 байтов, что является порцией данных оригинальной IP датаграммы. Затем, добавляя 20 байтов для IP заголовка мы получим размер оригинальной IP датаграммы (4440 + 680 + 20 = 5140).

Вставі

• Подведем итоги

IPv4

- Два адреса
- · TTL
- Фрагментация
- Есть контрольная сумма по заголовку
- Есть признак качества обслуживания